


Many laptop computers have special function keys that turn part of the alphabetical keyboard into a numerical keypad as there is insufficient space to allow a separate keypad to be built into the laptop's chassis. Separate external plug-in keypads can be purchased. Keypads for the entry of PINs and for product selection appear on many devices including ATMs, vending machines, Point of Sale payment devices, time clocks, combination locks and digital door locks. In 1984, the first projected capacitance keypad was used to sense through the shop window of a travel agency. The first key-activated mechanical calculators and many cash registers used "parallel" keys with one column of 0 to 9 for each position the machine could use. A smaller, 10-key input first started on the Standard Adding Machine in 1901. The calculator had the digit keys arranged in one row, with zero on the left, and 9 on the right. The modern four-row arrangement debuted with the Sundstrand Adding Machine in 1911. There is no standard for the layout of the four arithmetic operations, the decimal point, equal sign or other more advanced mathematical functions on the keypad of a calculator. The invention of the push-button telephone keypad is attributed to John E. Karlin, an industrial psychologist at Bell Labs in Murray Hill, NJ. On a telephone keypad, the numbers 1 through 9 are arranged from left to right, top to bottom with 0 in a row below 789 and in the center. Telephone keypads also have the special buttons labelled * ( star) and # (octothorpe, number sign, "pound", "hex" or "hash") on either side of the zero key. The keys on a telephone may also bear letters which have had several auxiliary uses, such as remembering area codes or whole telephone numbers.Īlthough calculator keypads pre-date telephone keypads by nearly thirty years, the top-to-bottom order for telephones was the result of research studies conducted by a Bell Labs Human Factors group led by John Karlin. They tested a variety of layouts including a Facit like the two-row arrangement, buttons in a circle, buttons in an arc, and rows of three buttons. The definitive study was published in 1960: "Human Factor Engineering Studies of the Design and Use of Pushbutton Telephone Sets" by R.
